Download Personal lighting control with occupancy and daylight adaptation PDF

TitlePersonal lighting control with occupancy and daylight adaptation
Author
LanguageEnglish
File Size1.4 MB
Total Pages68
Table of Contents
                            Table of contents
List of figures
1 Introduction
	1.1 Philips' lighting commercial products
	1.2 Buildings and lighting systems nowadays
	1.3 Lux: illuminance unit of measure
	1.4 Contribution
	1.5 Lighting control systems' state of art
	1.6 Thesis structure
2 System model
	2.1 Analytical model
3 Control algorithms
	3.1 Reference set-points at light sensors
	3.2 Reference stand-alone controller
		3.2.1 Generalized stand-alone controller
		3.2.2 Stand-alone controller parameters
	3.3 MIMO lighting control algorithm
		3.3.1 Lighting control algorithm using unconstrained optimization
		3.3.2 Lighting control algorithm using constrained optimization
4 Numerical results
	4.1 Office lighting model and parameter description
	4.2 Unconstrained optimization behaviour
		4.2.1 All-occupied scenario
		4.2.2 One-occupied scenario
		4.2.3 Explanation and energy savings
	4.3 Sensor-driven lighting control
		4.3.1 Overshoot/undershoot and settling time
		4.3.2 Achieved illuminance and energy savings
		4.3.3 All zones occupied
		4.3.4 One zone occupied
	4.4 Sensor-driven personal lighting control
5 Conclusions and future works
References
Appendix A TrueTime Toolbox
	A.1 Wired network description and parameters
                        
Document Text Contents
Page 1




Personallightingcontrolwith
occupancyanddaylightadaptation
MarcoRossi
1
;
2
DepartmentofInformationEngineering,UniversityofPadova,Italy
1
PhilipsResearch,HighTechCampus,Eindhoven,TheNetherlands
2
MasterDegreeinAutomationEngineering
Supervisors
:
AngeloCenedese
1
,AshishPandharipande
2
Academicyear:2014-2015



Page 2







Page 34




22
Controlalgorithms
Substitutingthemodel
y
(
k
+
1
)=
G
u
(
k
)+
d
(
k
+
1
)
in(
3.15
)andsolvingthenorm,
thecostfunctioncanberewrittenasfollows:
f
(
u
(
k
))=

l
u
(
k
)
T
G
T
G
u
(
k
)+
2
l
u
(
k
)
T
G
T
(
d
(
k
+
1
)

r
)+(
1

l
)(
u
(
k
)
T
1
)
2
+(

)

;
(3.17)
where
1
=[
1
:::
1
]
T
and
(

)
indicatestermsthatdonotdependon
u
(
k
)
.Thelastterm
in(
3.17
)canalsobewrittenas:
(
1

l
)(
u
(
k
)
T
1
)
2
=(
1

l
)(
u
(
k
)
T
1
)(
1
T
u
(
k
))=(
1

l
)
u
(
k
)
T
(
11
T
)
u
(
k
)
;
since
u
(
k
)
T
1
isascalarterm,sothatthecostfunction(
3.15
)becomes:
f
(
u
(
k
))=

l
u
(
k
)
T
G
T
G
u
(
k
)+
2
l
u
(
k
)
T
G
T
(
d
(
k
+
1
)

r
)+(
1

l
)
u
(
k
)
T
(
11
T
)
u
(
k
)

:
(3.18)
Takingthederivativeof(
3.18
)withrespecttovector
u
(
k
)
andequatingittozeroit
yields:
l
G
T
G
u
(
k
)+
l
G
T
(
d
(
k
+
1
)

r
)+(
1

l
)(
11
T
)
u
(
k
)=
0
;
(3.19)
andsolvingnowtheequationin
u
(
k
)
,itispossibletoobtainthefollowingoptimum
dimmingvector:
u
?
(
k
)=(
G
T
G
+
1

l
l
11
T
)

1
G
T
(
r

d
(
k
+
1
))
:
(3.20)
Generallyitisnotpossibletoassumethatthedaylighttermin(
3.20
)isexplicitly
known.Howeverundertheassumptionthatdaylightchangesslowly,similarlyto
Section(
3.2.2
),wecanestimatethedaylightvaluefromthepreviousiteration:
d
(
k
+
1
)
ˇ
d
(
k
)=
y
(
k
)

G
u
(
k

1
)
:
(3.21)
Thensubstituting(
3.21
)in(
3.20
)thiscontrollawisobtained:
u
?
(
k
)=(
G
T
G
+
1

l
l
11
T
)

1
G
T
(
e
(
k
)+
G
u
(
k

1
))
:
(3.22)
Where
e
(
k
)=
r

y
(
k
)
isthevectoroferrorsatthetimeinstant
k
.



Page 35




3.3MIMOlightingcontrolalgorithm
23
Inderivingthiscontrollaw,thephysicallimitsoftheluminairedimminglevels
werenotaccountedfor.Tomakesurethatthecontrolleroutputislimitedbetween0
and1asaturationfunctionisappliedtothesolution(
3.22
),asshownin(
3.7
).
3.3.2Lightingcontrolalgorithmusingconstrainedoptimization
Inthesecondapproachtheoptimumdimmingvectorisobtainedbyaddingthe
constraintsonlightsensorsvaluesanddimminglevelsexplicitly.Thenconsiderthe
optimizationproblemin(
3.16
)andaddthefollowingconstraints:
(
y
(
k
+
1
)=
G
u
(
k
)+
d
(
k
+
1
)

r
;
0

u
(
k
)

1
;
(3.23)
wheretheaboveinequalitiesholdcomponent-wise,
0
and
1
arevectorswitheach
component0and1respectively.Theoptimumdimmingvector
u
?
(
k
)
isthusobtained
bysolvingthefollowingoptimizationproblematiteration
k
:
u
?
(
k
)=
argmin
u
(
k
)

l
jj
G
u
(
k
)+
d
(
k
+
1
)

r
jj
2
2
+(
1

l
)
jj
u
(
k
)
jj
2
1

;
(3.24)
(
y
(
k
+
1
)=
G
u
(
k
)+
d
(
k
+
1
)

r
;
0

u
(
k
)

1
;
(3.25)
Notethattheaboveoptimizationproblemalwayshasafeasiblesolutionforthe
fisensor-drivenlightingcontrol"scenario,giventhat
d
(
k
)

0
and
G
1

r
holdsdue
tothecalibrationstep.Notealsothattheilluminationerroriscapturedinboththe
termofthecostfunctionaswellasintheconstraint.Thisensuresthatthe
attainedlightsensorvaluesattheoptimumsolutionwillbeclosetotheset-points,as
opposedtoanoptimizingsolutionwherethistermisnottakenintoaccountinthecost
function(
l
=
0case).
Again,intheoptimizationframework,thedaylighttermin(
3.24
)andin(
3.25
)
isnotexplicitlyknown.However,undertheassumptionthatthedaylightchanges
slowly,thistermmaybeestimatedagainusing(
3.21
).
Notethatthecostfunctionin(
3.24
)isquadraticinthedimminglevels
andtheinequalityconstraintsarelinearinthedimminglevels.Suchoptimization



Page 67







Page 68




Similer Documents