Download Crane Girder Design PDF

TitleCrane Girder Design
File Size40.4 KB
Total Pages6
Document Text Contents
Page 1

CRANE GIRDER DESIGN MEMBER : CG1

Pv1 Pv2 Max Wheel Load = 155 kN

3.90 0.00 0.00 No of Wheels = 4 wheels

Distance between wheels (du1) a = 3.90 m

b = 0.00 m

Fh1 Fh2 c = 0.00 m

L

Length of Crane Bridge = 9.40 m

Length of Crane Girder (L) = 9.00 m

1. DETERMINE LOAD

a.) VERTICAL LOAD

Pv1 = 155 kN without impact Pv1a = 155 x 1.25 = 193.75 kN with impact

Pv2 = 155 kN without impact Pv2a = 155 x 1.25 = 193.75 kN with impact

Pv3 = 0 kN without impact Pv3a = 0 x 1.25 = 0.0 kN with impact

Pv4 = 0 kN without impact Pv4a = 0 x 1.25 = 0 kN with impact

b.) HORIZONTAL LOAD

Fh1 = 0.20 x [ Pv1 ] = 31.00 kN

Fh2 = 0.20 x [ Pv2 ] = 31.00 kN

Fh3 = 0.00 x [ Pv3 - (Bridge weight) / 8 ] = 0.00 kN

Fh4 = 0.00 x [ Pv4 - (Bridge weight) / 8 ] = 0.00 kN

c.) DEAD LOAD - SELFWEIGHT

W = 2.20 kN/m

d.) LOAD FACTOR

Dead Load f =

Vertical and Horizontal Crane Load considered separately

f =

Vertical and Horizontal Crane Load considered acting together

f =

2. MAXIMUM MOMENT AND SHEAR

A. MAXIMUM MOMENT DUE TO WHEEL LOAD (W/O IMPACT)

center

Mv = 427.98 kN-m (MAX. )

1.575 3.90 3.525

L = 9.0 m

M1 = 0 kN-m

Kn-m M1 = 297.01 kN-m

427.98 kN-m M2 = 427.98 kN-m

M4 = 0.00 kN-m

MOMENT DIAGRAM M5 = 0 kN-m

M6 = 0 kN-m

Pv1 Pv2

y

x

y

x

z

Page 2

B. MAXIMUM SHEAR DUE TO WHEEL LOAD (W/O IMPACT)

Qv = 242.66 kN (MAX. )

Pv1 Pv2

Q1 = 242.66 kN

Q2 = 87.66 kN

Q3 = -67.34 kN

3.90 5.10 Q4 = -67.34 kN

L = 9.0 m Q5 = -67.34 kN

0.00

242.66 kN 88 kN

-67.3 kN

-67.34 kN -67.34 kN

SHEAR DIAGRAM

C. MAXIMUM MOMENT DUE TO LATERAL WHEEL LOAD

Mh = 29.06 kN-m (MAX. )

Np = Mh/1.0 = 29.06 kN

4.50 4.50

L = 3.75 m

59.41 Kn-m

29.06 kN-m M4 = 0.00 kN-m

M5 = 0.00 kN-m

MOMENT DIAGRAM M6 = 0 kN-m

D. MAXIMUM SHEAR DUE TO LATERAL WHEEL LOAD

Fh = 31.00 kN-m (MAX. )

Fh1

L = 3.75 m

48.53 kN 18 kN

0.0 kN

SHEAR DIAGRAM

E. MAXIMUM MOMENT DUE TO WHEEL LOAD (W/ IMPACT)

center

Mv2 = 535 kN-m (MAX. )

1.575 3.90 3.525

L = 9.0 m

M1 = 0 kN-m

371.27 Kn-m M1 = 371.27 kN-m

535.00 kN-m M2 = 535.00 kN-m

M4 = 535.00 kN-m

MOMENT DIAGRAM M5 = 535.00 kN-m

Le = 3.75

Le = 3.75

Fh1

Pv1a Pv2a

Fh1

y

x

z

x

z

x

Fh1

y

x

Page 3

M6 0 kN m

F. MAXIMUM SHEAR DUE TO WHEEL LOAD (W/ IMPACT)

Qv2 = 303.33 kN (MAX. )

Pv1a Pv2a

Q1 = 303.33 kN

Q2 = 109.58 kN

Q3 = -84.17 kN

0.01 8.99 Q4 = -84.17 kN

L = 9.0 m Q5 = -84.17 kN

0.00

303.33 kN 110 kN

-84.17 kN

-84.17 kN -84.17 kN

SHEAR DIAGRAM

G. MAXIMUM MOMENT AND SHEAR DUE TO SELFWEIGHT

WL 2.20 x 9.00

2

= 9.90 kN

WL^2 2.20 x 9.00 ^2

8

= 22.28 kN-m

H. FACTORED MOMENT AND SHEAR

a.) Vertical crane load with impact and no horizontal crane load

Maximum moment

Mx = 1.4 x M + 1.6 x Mv2

= ( 1.4 x 22.28 ) + ( 1.6 x 535.00)

= kN-m

Maximum shear

Fa = 1.4 x Q + 1.6 x Qv2

= ( 1.4 x 9.90 ) + ( 1.6 x 303.33)

= kN

b.) Vertical crane load with no impact and horizontal crane load

Vertical maximum moment Maximum axial load

Mx = 1.4 x M + 1.6 x Mv1 N = 1.6 x Np

= ( 1.4 x 22.28 ) + ( 1.6 x 427.98) = 1.6 x 29.06

= kN-m = 46.50 kN

Horizontal maximum moment

My = 1.6 x Mh

= 1.6 x 29.06

= kN-m

c.) Vertical crane load with impact and horizontal crane load acting together

Vertical maximum moment Maximum axial load

Mx = 1.4 x M + 1.4 x Mv2 N = 1.4 x Np

= ( 1.4 x 22.28 ) + ( 1.4 x 535.00) = 1.4 x 29.06

= kN-m = 40.69 kN

Horizontal maximum moment

My = 1.4 x Mhp

= 1.4 x 29.06

= kN-m40.69

887.19

499.19

715.96

46.50

M = =
8

780.19

Q = =
2

y

x

Page 4

3. DESIGN OF CRANE GIRDER

a.) SECTION MEMBER PROPERTIES : ( See Section Properties Calculation ) UB914x305x224

FIG. 1 B

T D = 91.04 cm d = 86.26 cm

b B = 30.41 cm A = 282.51 cm^2

tw = 1.59 cm Af = 72.68 cm^2

D Tf = 2.39 cm x = 38.09 cm

t Ix = 370702.52 cm^4 u = 0.9

Iy = 11230.90 cm^4 ry = 6.31 cm

Sx = 9400.79 cm³ py = 265.0 N/mm
2

Zy = 738.63 cm³ pyw = 265.0 N/mm
2

Zfy = 368.37 cm³ Le = 375 cm

b.) BUCKLING RESISTANCE MOMENT FOR THE XX-AXIS

( Table 11 ) = 275 / py = 1.02

b 14.4 275

T 2.39 265.0

b 14.4 275

T 2.39 265.0

d 86.3 275

t 1.59 265.0

SLENDERNESS CHECK ( 4.3.6.7 )

Le 375.00

ry 6.31

( 200.00 = back truss lattice pitch )

= 0.5 For symmetrical H shape ( 4.3.6.7 )

59.43 1.6

x 38.09

v = 0.968 From Table 19 BS 5950 Part I 2000

LT = u.v. w w = 1.0 ( Section is plastic ) from 4.3.6.9

= 52

pb = 200.2 N/mm
2 From Table 17 BS 5950 Part I 2000

pc = 230 N/mm
2 From Table 24 c BS 5950 Part I 2000

Mb = Sx.pb = 9401 x 200.20 /10^3

= 1882.04 kn-m

c.) MOMENT CAPACITY FOR THE SECTION FOR YY-AXIS

Mzy = Zfy.py = 368.37 x 265 /10^3

= 97.62 kn-m

4. CHECK IN BENDING

a.) Vertical moment with impact and no horizontal moment

Mx = 887.19 kn-m Mb = 1882.04 kn-m O.K.

b.) Vertical moment with no impact and horizontal moment

N Mx My

AfPc Mb Mzy

46500.00 715.96 46.50

1671637.7 1882.04 97.62

0.89 < 1.0 O.K.

c.) Vertical moment with impact and horizontal moment

N Mx My < 1.0

APc Mb Mzy

40687.50 780.19 40.69 < 1.0

1671637.7 1882.04 97.62

0.86 < 1.0 O.K.

d

+

+

+

+

<

=

=

=

+ <

==

=

= 6.03

= =

SECTION IS PLASTIC

59.43

9.17

54.25 <80 = 80.0 = 81.5

28.52

< 9.0

+

= 28.0 =

=

1.0

1.0

= 1.6

<

= 6.03 <28

= 9.0

+

+

Page 5

5. CHECK FOR DEFLECTION

a.) VERTICAL

L 9000

1000 1000

a.) HORIZONTAL

L 3750

500 500

Consider 2 wheels inside the 9.0m beam span ,

= 4.21 mm < 9.00 mm O.K.

= 1.48 mm < 7.50 mm O.K.

6. SHEAR CAPACITY

Py = 0.60 x d x t py

= 0.60 x 863 x 16 x 265 /10^3

= 2180.74 kN

Py = 2180.74 kN Fa = 499.19 kN O.K.

7. WEB BUCKLING AND BEARING

d / t = 54.25 < 62 = 63.24 ( from 4.4.5.1 )

Shear buckling strength of web From Table 21 of BS 5950 Part I 2000

qw = 158 N/mm
2

Buckling Resistance

Vb = d t qw

Vb = 863 x 16 x 158 /1000

= 2167.02 kn > kN O.K.

Bearing Capacity of web ( 4.5.2 of BS 5950 Part I 2000 )

Pbw = ( b1 + n k ) t pyw t = 16 mm

T = 28 mm

k = 28 mm ( k = T )

- except at the end of the member : n = 5

b1 + nk = t +2T + 5T = 212 mm

Pbw = 212 x 16 x 265 /10^3

= 898.88 kN > kN O.K.

- at end of the member : n = 2 + 0.6 be / k

be = ( B - t - 2T ) / 2 = 116 mm

n = 2 + 0.6 x 116 / 28 = 4.49 > 5.0 n = 4.5

b1 + nk = t + 2T + 4.5T = 197.63 mm

Pbw = 197.6 x 16 x 265 /10^3

= 837.9512 kN Fx = kN O.K.

Fx - Pbw = 499.2 - 838.0 = -338.76 kN

Ps = As net x Py

= 20 x (400 -20 -20 ) x 265/1000

= 1908 kN > kN O.K.-338.76

>

=

=

384 x 205000 x 3707025200

h

5 x 28251 x 78.5 / 1000000 x 9000^4

48 x 205000 x 112309000

31000 x 3750^3

=

v =

=

+

6x205000x3707025200x9000/1000000

499.19

620.00

mm= 9.00

7.50 mm

499.19

4x[155x2550x(9000^2-2550^2-4500^2)+155x6450x(9000^2-6450^2-4500^2)

Similer Documents