Download Bissig 2015 Au Ag PDF

TitleBissig 2015 Au Ag
TagsAndes Rock (Geology) Igneous Rock Crust (Geology) Plate Tectonics
File Size12.0 MB
Total Pages38
Table of Contents
                            Physiographic and tectonic settings of high-„sulfidation epithermal gold–silver deposits of the Andes and their controls on...
	1. Introduction
	2. Epithermal deposits
	3. Distribution of high-sulfidation deposits in the Andes
	4. El Indio belt
		4.1. The Tambo deposit
		4.2. El Indio deposit
		4.3. Pascua–Lama
		4.4. Veladero
	5. Maricunga belt
		5.1. La Coipa
		5.2. La Pepa
	6. High-sulfidation epithermal deposits of the Domeyko fault system
		6.1. El Hueso
		6.2. El Guanaco
	7. Late Miocene high-sulfidation epithermal Au deposits of the western Cordillera of northern Chile and southern Peru
	8. Central to northern Peruvian flat slab segment
	9. High-sulfidation epithermal deposits of the central Peruvian polymetallic belt
		9.1. Julcani
		9.2. The Marcapunta–Colquijirca district
		9.3. Cerro de Pasco
		9.4. Quicay
	10. The high-sulfidation epithermal Au (–Cu, Ag) deposits of northwestern Peru
		10.1. Pierina
		10.2. Lagunas Norte
		10.3. Yanacocha
		10.4. Tantahuatay, Sipan and La Zanja
	11. The northern Andes
		11.1. Quimsacocha
		11.2. California Vetas
	12. Summary and comparison to low-sulfidation deposits
	13. Controls of geomorphic processes and climate on mineralization
	14. Igneous rocks, volcanology and magmatic fluids related to high-sulfidation epithermal deposits
	15. Conclusions
	Acknowledgments
	References
                        
Document Text Contents
Page 1

ore01334mw-eps.22.eps


Ore Geology Reviews 65 (2015) 327–364

Contents lists available at ScienceDirect

Ore Geology Reviews

j ourna l homepage: www.e lsev ie r .com/ locate /oregeorev
Review
Physiographic and tectonic settings of high-sulfidation epithermal
gold–silver deposits of the Andes and their controls on
mineralizing processes
Thomas Bissig a,⁎, Alan H. Clark b, Amelia Rainbow b, Allan Montgomery c

a Mineral Deposit Research Unit, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC V6T 1Z4, Canada
b Queen's University, Bruce Wing/Miller Hall, Kingston, ON K7L 3N6, Canada
c Riverside Resources Suite 1110, 1111 West Georgia Street, Vancouver, BC V6E 4M3, Canada
⁎ Corresponding author.
E-mail address: [email protected] (T. Bissig).

http://dx.doi.org/10.1016/j.oregeorev.2014.09.027
0169-1368/© 2014 Elsevier B.V. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 6 July 2014
Received in revised form 10 September 2014
Accepted 17 September 2014
Available online 28 September 2014

Keywords:
High-sulfidation
Epithermal
Andes
Landscape evolution
Erosion
Uplift
Flat subduction
Neogene
Gold and silver ores in the vast majority of Andean high-sulfidation epithermal Au–Ag deposits occur at high
present day elevations and typically 200–500 m below low relief landforms situated at 3500 to 5200 m a.s.l.
Most deposits are middle Miocene and younger and include, El Indio, Tambo, Pascua–Lama, Veladero (El Indio
belt, Chile/Argentina), Cerro de Pasco (Central Peru), Pierina, Lagunas Norte, Yanacocha (northern Peru),
Quimsacocha (Ecuador), and the California–Vetas mining district (Santander, Colombia), jointly accounting for
N130MozAu resources. Slightly older examples are only preserved in the AtacamaDesert and include themiddle
Eocene El Guanaco and El Hueso and the late Oligocene/early Miocene La Coipa deposits. The absence of Paleo-
cene and older high-sulfidation epithermal deposits can be explained by limited preservation potential imposed
by transpressional tectonicswithin overall contractile episodes and surface uplift. These conditions prevailed pre-
dominantly in segments of shallow-angle subduction of the Nazca or Caribbean plate below the South American
continent, a tectonic setting also common for porphyry-style Cu (–Au,Mo) deposits. Stratovolcanoes are uncom-
mon ore hosts and volcanic rocks coincident with mineralization are in most cases volumetrically restricted or
absent, recording the terminal stages of local arc magmatism. However, dacitic domes are important at,
e.g., Yanacocha and La Coipa. At Lagunas Norte, a small stratovolcano largely pre-dating but temporally overlap-
ping with mineralization occurs immediately east of the deposit and volcanic sector collapse may have occurred
during hydrothermal activity.
Mineralization is typically located near the backscarp of pediments or the heads of valleys incising now high-
elevation, low-relief surfaces. In the California–Vetas Mining District and El Indio belt, hydrothermal alunite
ages become generally younger upstream along the incising valleys, indicating that hydrothermal activity and,
by inference, ore deposition were facilitated by erosion. The lowering of the water table and reduction of hydro-
static and lithostatic pressure at these sites of high local relief are believed to have enhanced both boiling and
mixing of magmatic with meteoric fluids, ultimately enhancing ore deposition.
The host rock composition, permeability and location of the water table control the distribution of alteration
zones and ore. Intermediate volcanic rocks are the most common ore-hosts but they typically pre-date mineral-
ization by several Ma. However, high-sulfidation epithermal mineralization can be hosted in any conceivable
rock type including high grademetamorphic rocks (California–Vetasmining district), significantly older plutonic
rocks (Pascua–Lama) or quartzites (Lagunas Norte). Large vuggy quartz alteration zones and commonly oxidized
low-grade large-tonnagemineralization are best developed in relatively permeable volcaniclastic rocks or hydro-
thermal breccia bodies, whereas coherent volcanic, plutonic, or metamorphic rocks may host fault- and breccia-
controlled ores. The near-surface steam-heated zone can attain a thickness of several hundred meters in dry
climates (e.g. Veladero, Pascua–Lama, Tambo) but is typically poorly developed and less than 20 m thick in
humid climatic zones.
The physiographic and tectonic settings of high-sulfidation epithermal deposits are distinct from low-sulfidation
epithermal districts such as those of Patagonia, El Peñón (Chile) or Fruta del Norte (Ecuador). The latter range to
significantly older ages (Jurassic to early Eocene) occur at mainly lower elevations and were emplaced in exten-
sional settings. A temporal coincidence betweenuplift, erosion andmineralizing processes aswell as a spatial and
temporal association with porphyry style mineralization is not evident for these low-sulfidation districts.

© 2014 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.oregeorev.2014.09.027&domain=pdf
http://dx.doi.org/10.1016/j.oregeorev.2014.09.027
mailto:[email protected]
http://dx.doi.org/10.1016/j.oregeorev.2014.09.027
http://www.sciencedirect.com/science/journal/01691368

Page 2

ore01334lw-eps.20.eps


Reviews 65 (2015) 327–364
Contents
328 T. Bissig et al. / Ore Geology
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
2. Epithermal deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
3. Distribution of high-sulfidation deposits in the Andes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
4. El Indio belt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

4.1. The Tambo deposit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
4.2. El Indio deposit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
4.3. Pascua–Lama . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
4.4. Veladero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

5. Maricunga belt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
5.1. La Coipa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
5.2. La Pepa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

6. High-sulfidation epithermal deposits of the Domeyko fault system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
6.1. El Hueso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
6.2. El Guanaco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

7. Late Miocene high-sulfidation epithermal Au deposits of the western Cordillera of northern Chile and southern Peru . . . . . . . . . . . . . . . 344
8. Central to northern Peruvian flat slab segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
9. High-sulfidation epithermal deposits of the central Peruvian polymetallic belt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

9.1. Julcani . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
9.2. The Marcapunta–Colquijirca district . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
9.3. Cerro de Pasco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
9.4. Quicay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346

10. The high-sulfidation epithermal Au (–Cu, Ag) deposits of northwestern Peru . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
10.1. Pierina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
10.2. Lagunas Norte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
10.3. Yanacocha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
10.4. Tantahuatay, Sipan and La Zanja . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

11. The northern Andes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351
11.1. Quimsacocha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
11.2. California Vetas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

12. Summary and comparison to low-sulfidation deposits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
13. Controls of geomorphic processes and climate on mineralization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
14. Igneous rocks, volcanology and magmatic fluids related to high-sulfidation epithermal deposits . . . . . . . . . . . . . . . . . . . . . . . . 360
15. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
1. Introduction

The Andes are the world's most endowed region with respect to
giant magmatic-hydrothermal ore deposits (Cooke et al., 2005). They
host the largest-known porphyry copper deposits (e.g., Rio Blanco–Los
Bronces–Los Sulfatos, El Teniente, Chuquicamata) as well as many of
theworld's largest epithermal Au–Ag deposits (e.g., Yanacocha, Lagunas
Norte, Pascua–Lama, Veladero: Sillitoe, 2008). The vast majority of
Andean epithermal deposits containing N10 Moz Au are of high-
sulfidation type. These deposits have a close link to a magmatic source
for fluids, volatiles and metals (e.g., Deyell et al., 2004; Rye, 1993) but
form at depths of typically less than 1 km (e.g. Sillitoe, 2010) and conse-
quentlymineralizingprocesses are influenced by the near-surface phys-
icochemical environment. The main focus of this review is on deposits
and districts where the bulk of the precious metal is contained in
the epithermal environment, i.e., the shallow part of magmatic-
hydrothermal systems, and concentrates on the physiographic environ-
ment of epithermal mineralization. This paper does not discuss major
porphyry Cu deposits in detail, although the shallow portions of many
of these have been overprinted by epithermal mineralization or alter-
ation (e.g., Masterman et al., 2004; Ossandón et al., 2001). Similarly,
the deposits hosting Sn, W, Ag and Au ores in the eastern Cordillera of
Bolivia and Peru are not discussed. Following a general summary of
epithermal deposit types and their terminology, this article presents a
comprehensive overview of the major high-sulfidation epithermal dis-
tricts and mineral belts of the Andes. It focuses on the links between
landscape evolution, climatic setting, volcanology and tectonics, and
discusses the influence these factors can have on both mineralizing
processes and the preservation of the deposits.
2. Epithermal deposits

Epithermal deposits are usually classified into sub-types based on ei-
ther ore sulfide assemblage or characteristic associated alteration; both
schemes have inherent limitations. Some of themostwidely referenced
review papers on the topic (Hedenquist et al., 2000; Sillitoe and
Hedenquist, 2003; Simmons et al., 2005) prefer a classification into
high, low and intermediate-sulfidation types. This classification scheme
can, however, be problematic, because sulfide assemblages may be dif-
ficult to classify in a field exploration setting, particularly if the deposit
has been oxidized. Moreover, sulfide assemblages within a single de-
posit may represent precipitation over the entire breadth of sulfidation
state, from high to intermediate and low-sulfidation, depending on
fluid–wall rock interaction (e.g., El Indio: Heather et al., 2003a, 2003b;
Cerro de Pasco: Baumgartner et al., 2008; Lagunas Norte: Cerpa et al.,
2013). Alternative classification is based on dominant alteration
and gangue assemblages and includes quartz–adularia–sericite and
quartz–alunite or acid sulfate type epithermal deposits (Heald et al.
1987, Tosdal et al., 2009), the former typically including low to
intermediate-sulfidation sulfide assemblages and the latter associated
with high-sulfidation deposits. The limitation of this classification
scheme is that, particularly in high-sulfidation deposits, alteration may
pre-date and may not be directly related to mineralization (see below).

Page 19

ore01334mw-eps.18.eps


345T. Bissig et al. / Ore Geology Reviews 65 (2015) 327–364
geomorphology (Hoke et al., 2007; Jordan et al., 2010; Schildgen et al.,
2007) and paleoaltimetry (based on stable isotope and paleobotany;
Garzione et al., 2008) suggest that at least 1000m ormore of this eleva-
tion gain occurred after 10Ma, but prior to about 5Ma. Thus, epithermal
gold deposits of the Central Volcanic zone formed during a major uplift
pulse.

8. Central to northern Peruvian flat slab segment

The Andean segment extending from ~15° Lat S in Peru, to 2° Lat S in
southern Ecuador, lacks recent arc volcanism, which, as in Chile, has
been attributed toflat-slab subduction spatially coincidingwith subduc-
tion of aseismic ridges and oceanic plateaus (e.g., Gutscher et al., 1999a;
Martinod et al., 2010; Skinner and Clayton, 2013). The high-sulfidation
epithermal deposits of this region occur in two distinct belts (Noble
and McKee, 1999). The southeastern belt, located east of the Cordillera
Occidental, which forms the Continental divide, and extends from
Julcani (~13° Lat S) to the latitude of Antamina (~9.5° Lat S). It coincides
with the central Peruvian polymetallic province and contains a variety
of porphyry-related and carbonate hosted deposits emplaced at differ-
ent paleodepths (Bissig and Tosdal, 2009; Escalante, 2008; Escalante
et al., 2010; Love et al., 2004). This segment includes the cordilleran
base metal lode deposits (i.e. sulfide rich polymetallic deposits:
Bendezú et al., 2003) of Marcapunta–Colquijirca and Cerro de Pasco
which are centered on high-sulfidation epithermal deposits emplaced
in reactive host rocks (Bendezú and Fontboté, 2009; Bendezú et al.,
2008). The northwestern metallogenetic belt has its southern terminus
at Pierina at 9.5° Lat S, west of the Cordillera Blanca and is dominated by
high-sulfidation epithermal and porphyry Cu–Au deposits but also
includes a number of smaller vein hosted Ag–Au deposits such as
Quiruvilca (Gustafson et al., 2004; Noble and McKee, 1999). It includes,
from south to north, Pierina, Lagunas Norte and Yanacocha, the latter of
which contains upwards of 70 Moz contained Au (Longo et al., 2010;
Teal and Benavides, 2010) and which is by far the largest epithermal
deposit cluster of the Andes.

Subduction of the Nazca aseismic ridge in Peru commenced in the
middle Miocene at 14–10 Ma (Hampel, 2002) and is the inferred
cause of flat subduction (e.g., Martinod et al., 2010). However, estimates
on the timing of crustal thickening and uplift of the Cordillera Occiden-
tal in central and northern Peru vary from the early to the middle Mio-
cene and do not coincide everywhere with the onset of aseismic ridge
subduction and flat subduction. Thus, Noble et al. (1990) on the basis
of the age of tuff deposits in deeply incised paleovalleys in northern
Peru, suggested that uplift and erosion occurred in the early–late
Miocene. Crustal thickening inferred from whole rock geochemical
data of volcanic rocks in the central Peruvian polymetallic province is
inferred to have occurred around 12–15 Ma (Bissig and Tosdal, 2009).
In contrast, Montgomery (2012) proposed that amajor episode of uplift
commenced at about 17 Ma, i.e., before the inferred onset of ridge sub-
duction, but coincidentwith high-sulfidation epithermalmineralization
at Lagunas Norte (Cerpa et al., 2013; Montgomery, 2012).

9. High-sulfidation epithermal deposits of the central Peruvian
polymetallic belt

The central Peruvian polymetallic belt contains a number of late
Miocene silver and base metal-rich vein deposits that were emplaced
in the epithermal environment. These include: San Cristóbal (Beuchat
et al., 2004), Morococha (Catchpole et al., 2011) and Uchucchacua
(Bussell et al., 1990; Escalante, 2008). At Morococha an evolution from
the porphyry to the epithermal environment occurred concurrently
with erosion, and late Miocene epithermal Ag mineralization probably
occurred only a few 100 m below the paleosurface (Catchpole et al.,
2011). All of these epithermal deposits have sulfide assemblages of in-
termediate sulfidation state and veins are largely hosted in Mesozoic
carbonaceous rocks as well as Triassic volcanosedimentary rocks.
However, the polymetallic belt also contains a number of epithermal
deposits with important high-sulfidation characteristics; these are
described in the following.

9.1. Julcani

The Julcani district, mined since colonial times, consists of several-
vein hosted deposits fromwhich Ag and basemetals, as well as subordi-
nate Au, have been produced. Themineralization is hosted in coalescing
domes of andesitic-to-dacitic composition and postdates a large zone of
vuggy quartz and quartz alunite alteration in the center of the district, as
well as quartz–tourmaline–pyrite breccia bodies (Deen et al., 1994;
Petersen et al., 1977). Veins are zoned along strike from higher
sulfidation state enargite–tennantite bearing assemblages near the cen-
ter of the district to lower-sulfidation assemblages containing galena
and tennantite–tetrahedrite more distally (Petersen et al., 1977).
Magmatism largely predated the epithermal mineralization but a
9.7 Ma syn-mineral dyke and small, 7 Ma, post-mineral rhyolite
domes have been recognized (Deen et al., 1994; Petersen et al., 1977).
Julcani is hosted below a sub-planar, slightly east-inclined, land surface
situated at elevations of 4000–4500 m a.s.l.

9.2. The Marcapunta–Colquijirca district

Marcapunta is a high-sulfidation epithermal Au (–Ag, Cu) deposit.
The district also contains cordilleran base metal mineralization at the
Smelter deposit, northward contiguous toMarcapunta, andmore distal-
ly the Colquijirca Ag–Pb–Zn deposit, some 5 km north of Marcapunta.
The San Gregorio deposit is another cordilleran base metal deposit
southerly adjacent to Marcapunta (Bendezú et al., 2008). Vuggy quartz
alteration, phreatomagmatic breccias and disseminated gold minerali-
zation occur in the central Marcapunta dome, whereas stratabound
base metal and silver rich mineralization at Smelter and Colquijirca,
extending as far as 5 km north from Marcapunta, are hosted in Eocene
limestones and marls (Bendezú et al., 2008). There is a district-scale
lateral zoning fromproximal high-sulfidationmineralization containing
enargite and pyrite to intermediate pyrite, chalcopyrite and tennantite-
bearing ore, to a distal pyrite, sphalerite and galena dominated sulfide
assemblage, the later reflecting an intermediate sulfidation state
(Bendezú et al., 2008; Vidal and Ligarda, 2004). Alunite associated
with the central high-sulfidation gold mineralization yielded ages of
11.9 to 11.1 Ma, whereas that associated with the base metal minerali-
zation yielded slightly younger ages of 10.8 to 10.5 Ma (Bendezú et al.,
2008). The dacitic dome complex hosting some of the epithermal
mineralization was emplaced at 12.9 to 12.1 Ma (40Ar/39Ar biotite
ages). No syn- or post mineral volcanic or intrusive rocks are exposed
in the district.

Colquijirca is located near the eastern margin of a regionally exten-
sive low-relief plain situated at an elevation of 4200 to 4300 m a.s.l.
whereas the Cerro Marcapunta summit at 4450 m a.s.l. constitutes the
highest feature in the deposit area. Vuggy quartz hosted gold minerali-
zation extends from 4450m to about 4000m a.s.l. or 450 m below sur-
face, whereas distal basemetalmineralization occurs at depths less than
~400 m below surface. Proximal enargite-rich mineralization adjacent
to the dome complex, however, has been drilled to a depth of N600 m
below surface and attains thickness of up to 100 m (Bendezú et al.,
2008; Vidal and Ligarda, 2004).

9.3. Cerro de Pasco

Cerro de Pasco is located about 11 km N of Marcapunta and shares
many similarities to the geologic setting and mineralization style of
Colquijirca. The deposit is spatially related to a 15.4 to 15.2 Ma dacitic
diatreme dome complexwhichwas emplaced at the boundary of Devo-
nian phyllites to the west and Triassic-to-Jurassic limestones to the east
(Baumgartner et al., 2008, 2009). Mineralization occurred in two stages

Page 20

ore01334mw-eps.18.eps


346 T. Bissig et al. / Ore Geology Reviews 65 (2015) 327–364
(Baumgartner et al., 2008; Einaudi, 1977). Stage 1 was focused at the
eastern margin of the diatreme dome complex and is characterized
by a low-sulfidation sulfide assemblage consisting of a massive
quartz–pyrite ± pyrrhotite body with associated distal carbonate re-
placement ore containing galena and Fe-rich sphalerite. Alteration relat-
ed to stage 1 is quartz–sericite. The second mineralizing stage reflects
high-sulfidation states and has proximal E–W trending enargite–pyrite
veins, hosted in part by the diatreme breccia body, and distal carbonate-
hosted Pb–Zn–Ag veins and replacement bodies containing Fe-poor
sphalerite (Baumgartner et al., 2008). Alunite is part of the alteration as-
semblage of stage 2 and gives 40Ar/39Ar ages of 14.5 to 14.2 Ma, whereas
stage 1 is bracketed between15.4 and14.5Ma (Baumgartner et al., 2009).

Like the nearbyMarcapunta and Colquijirca deposits, Cerro de Pasco
is associatedwith a domecomplexwhich forms a local topographic high
above the regionally-extensive, low-relief surface to the west of it. The
pre-mining land surface was situated at about 4350 m a.s.l. and miner-
alization extends about 450 m below this original land surface
(Baumgartner et al., 2008).

9.4. Quicay

Quicay is a high-sulfidation epithermal center located 14 km W of
Cerro de Pasco. It is being mined by the Peruvian private company
Chancadora Centauro SAC and little information on its geology and
resources is publically available. According to information obtained
through the INGEMMET website Peru (Rossell et al., 2006) gold miner-
alization is hosted in a diatreme–dome complex and the highest gold
grades are found in the central vuggy quartz zones (average 3 ppm).
The ore is oxidized. A mineralization age of 37.5 Ma based on a K/Ar al-
unite age is suggested by Noble andMcKee, (1999) which is significant-
ly older than Cerro de Pasco, despite the similar inferred shallow level of
formation. Quicay mineralization is centered on a small hill that con-
tains outcrops of vuggy residual quartz. It has a summit elevation of
4350m, which is roughly 100 m above the same low-relief land surface
described for Cerro de Pasco. If the age constraint is reliable, it can be
inferred that no significant erosion affected the area since the Eocene.

10. The high-sulfidation epithermal Au (–Cu, Ag) deposits
of northwestern Peru

10.1. Pierina

Pierina is located in the Cordillera Negra, Ancash, west of the Cordil-
lera Blanca. The coeval, dominantly intermediate sulfidation, Santo
Toribio Ag-base metal vein systems occur ~ 5 km south of Pierina
(Rainbow, 2009), and both deposits are located beneath the shoulder
of an erosional surface overlooking the Callejón de Huaylas valley
(Figs. 10, 11). At Pierina, disseminated mineralization forms a sub-
horizontal body, and is largely hosted in a lithologically-controlled
vuggy quartz alteration zone, focused in a ca. 16.9 ± 0.6 Ma
(40Ar/39Ar, weakly chlorite-altered biotite total gas age) pumice tuff
and an underlying dacitic flow dome complex (Rainbow, 2009); both
members of the Oligocene to mid-Miocene Huaraz Group (Rainbow
et al., 2005; Strusievicz et al., 2000), the upper succession of the Calipuy
Supergroup subaerial volcanic arc. Hydrothermal breccias and small
dacitic domes cut these rocks but appear to pre-date mineralization
(Rainbow et al., 2005). Gold–silver mineralization was introduced
after initial acidic alteration, and is associated with enargite, pyrite,
bismuthinite–stibnite, galena and low-Fe sphalerite (Rainbow et al.,
2005). However, sulfides have largely been oxidized. Sub-microscopic
Au and Ag are now hosted in a goethite–hematite dominated oxide as-
semblage (Rainbow et al., 2005), the formation of which was facilitated
by microbial activity during supergene oxidation. During this process,
the local reduction of supergene fluids led to the formation of Au-
bearing acanthite (Rainbow et al., 2006). Supergene minerals at Pierina
do not include jarosite.
Hydrothermal alunite 40Ar/39Ar ages range from 15.08 ± 0.09 to
13.89 ± 0.13 Ma (n = 19), clustering in two pulses around 15 Ma and
14.4Ma (Rainbow, 2009), whereas an age of rare, vug filling porcellane-
ous alunite from the oxide zone, yielded a large-error 14.12 ± 1.59 Ma
plateau age and may be of supergene origin (Rainbow, 2009). This
suggests that oxidation closely followed hypogene mineralization. The
host rocks of the Huaraz group range in age from 29.3 to 14.8 Ma
(Rainbow et al., 2005; Strusievicz et al., 2000).

The mineralized part of Pierina is located between about 4000 and
3800 m a.s.l., starting about 100 below the nearest topographic highs.
A horizontally extensive steam-heated alteration blanket has not been
documented at Pierina, and the presence of any steam-heated alunite
remains controversial (Fifarek and Rye, 2005; Rainbow et al., 2005,
2006). However, paragenetic relationships and stable-isotope geo-
chemistry demonstrate thatmeteoric waters played an increasingly im-
portant role in deposit formation, from early alteration to subsequent
oxidation, and that these fluids became progressively less isotopically
exchanged over time (Rainbow et al., 2006). This suggests that the
water table was progressively lowered during the lifetime of the hydro-
thermal system (Fifarek and Rye, 2005; Rainbow et al., 2005, 2006).

In the Pierina–Santo Toribio area, components of middle Miocene
planar erosional landforms both preceding and broadly contemporane-
ous with mineralization at Pierina can be recognized (Fig. 11). The de-
posit formed at the crest of the Cordillera Occidental and Calipuy arc
facing the Amazonian low-lands to the east, the latter not yet separated
hydrographically from the Cordillera Negra as the interveningCordillera
Blanca was only uplifted in the late Miocene (González and Pfiffner,
2012; Petford and Atherton, 1992). An erosion surface, marked by an
angular unconformity, now tilted and dipping at ~ 20° to the ENE, un-
derlies the andesites below the Pierina deposit. The andesites have
been dated at ca. 21 Ma, suggesting that this angular unconformity re-
cords uplift and erosion in the late Oligocene to earlyMiocene, probably
representing the Aymará orogenic event (Sébrier et al., 1988).

The upper slope of the Cordillera Negra, immediately south of the
Santo Toribio deposit is faceted by four erosional surfaces, one of
which is constrained by the overlying 14.10 ± 1.33–14.99 ± 0.50 Ma
(40Ar/39Ar hornblende plateau ages) lava flows of the unaltered Santo
Toribio Formation andesite package. This constrained surface also
intersects the extensive area of phyllic alteration surrounding the
Santo Toribio vein system. This shows that hydrothermal activity (at
both Santo Toribio and Pierina, dated at ca. 15 to 14.4 Ma) was
penecontemporaneous with both andesite eruption and the incision of
the pediment. Volcanism terminated after 14Ma in the area. Theminer-
alization at Pierina (and Lagunas Norte—see below), the cessation of
volcanism and onset of uplift around 14 Ma pre-dated the arrival of
the Nazca ridge at the subduction zone by at least 2 Ma (Hampel,
2002). Uplift in response to crustal thickening in central and northern
Peru has, instead, been linked to increased mid Miocene plate conver-
gence and may not be directly related to initiation of flat subuduction
(Montgomery, 2012; Pardo‐Casas and Molnar, 1987).

10.2. Lagunas Norte

Lagunas Norte, La Libertad, is located about 200 km NNW of Pierina
and 100 km SSE of Yanacocha in the northeasternmineral belt of north-
ern Peru.Mineralization is largely hosted in quartziteswith scarce inter-
spersed coal beds of the Lower Cretaceous Chimú Formation and, to a
lesser degree, in overlying dacitic pyroclastic and volcaniclastic rocks
of the Lagunas Norte Formation (Fig. 12) Montgomery, 2012; Cerpa
et al., 2013). Lagunas Norte Formation volcanic units are volumetrically
minor and are restricted in distribution to the immediate Lagunas Norte
deposit area (Fig. 12) Mineralization is centered on at least 2 diatremes
which are also considered the source of the pyroclasitc rocks overlying
the quartzites (Cerpa et al., 2013; Montgomery, 2012). Hydrothermal
alunite 40Ar/39Ar data constrain the age of mineralization at Lagunas
Norte to between 17.4 and 16.5 Ma (Cerpa et al., 2013; Montgomery,

Page 37

ore01334mw-eps.9.eps


363T. Bissig et al. / Ore Geology Reviews 65 (2015) 327–364
Mallette, P., Rojas, R., Guttierrez, A.R., 2004. Geology, mineralization, and genesis of the La
Quinua gold deposit, Yanacocha district, northern Peru. In: Sillitoe, R.H., Perello, J.,
Vidal, C.E. (Eds.), Andean Metallogeny: New Discoveries, Concepts, and Updates.
Society of Economic Geologists Special Publication 11, pp. 301–312.

Mantilla Figueroa, L.C., Bissig, T., Valencia, V., Hart, C.J.R., 2013. The magmatic history of
the Vetas–California mining district, Santander Massif, Eastern Cordillera, Colombia.
J. S. Am. Earth Sci. 45, 235–249.

Mantilla, L.C., Valencia, V.A., Barra, F., Pinto, J., Colegial, J., 2009. GEocronología U–Pb de los
cuerpos porfíriticos del distrito auríofero de Vetas–California (Dpto de Santander,
Colombia). Bol. Geol. 31, 31–43.

Mantilla, F.L.C., Mendoza, F.H., Bissig, T., Craig, H., 2011. Nuevas evidencias sobre el
magmatismo Miocenico en el distrito minero de Vetas–California (Macizo de
Santander, Cordillera Oriental, Colombia). Bol. Geol. 33, 43–58.

Marsh, T.M., 1997. Geochronology, Thermochronology, and Isotope Systematics of the
Cu–Au and Au–Ag Deposits of the Potrerillos District, Atacama Region, Chile. Stanford
University, p. 341, (Unpubl. PhD thesis).

Marsh, T.M., Einaudi, M.T., McWilliams, M., 1997. 40Ar/39Ar geochronology of Cu–Au and
Au–Ag mineralization in the Potrerillos District, Chile. Econ. Geol. 92, 784–806.

Martin, M., Clavero, J., Mpodozis, C., Cutiño, L., 1995. Estudio geológico regional de la
franja El Indio. Cordillera de Coquimbo: Informe registrado IR-95-6 Servicio Nacional
de Geología y Minería, Chile, and Compañía Minera San José.

Martinod, J., Husson, L., Roperch, P., Guillaume, B., Espurt, N., 2010. Horizontal subduction
zones, convergence velocity and the building of the Andes. Earth Planet. Sci. Lett. 299,
299–309.

Masterman, G.J., Cooke, D.R., Berry, R.F., Clark, A.H., Archibald, D.A., Mathur, R., Walshe, J.L.,
Duran,M., 2004. 40Ar/39Ar and Re–Os geochronology of porphyry copper–molybdenum
deposits and related copper–silver veins in the Collahuasi District, northern Chile. Econ.
Geol. Bull. Soc. 99, 673–690.

Moncada, D., Mutchler, S., Nieto, A., Reynolds, T.J., Rimstidt, J.D., Bodnar, R.J., 2012.
Mineral textures and fluid inclusion petrography of the epithermal Ag–Au
deposits at Guanajuato, Mexico: Application to exploration. J. Geochem. Explor.
114, 20–35.

Montario, M., Garver, J., Reiners, P., Ramage, J., Brandon, M., 2005a. Thermochronological
evidence for kilometre-scale incision of the northern Peruvian Andes. Geol. Soc. Am.
Abstr. Programs 37, 553.

Montario, M., Garver, J.I., Reiners, P., Ramage, J.M., 2005b. Timing of canyon incision of the
Río Pativilca in response to uplift of the Andes in northern Perú. Geol. Soc. Am. Abstr.
Programs 37, 76.

Montgomery, A.T., 2012. Mmetallogenetic Controls on Miocene High-sulphidation
Epithermal Gold Mineralization, Alto Chicama District, La Libertad, Northern Perú.
Queen's University, Kingston, Ontario, Canada, p. 381 (Unpublished PhD thesis).

Morche, W., Velasco, C., Loayza, D., Clark, A., 2008. Late Miocene High-sulfidation
Epithermal Gold Deposits of the Aruntani District, Southern Peru, Congreso Geologico
del Peru. Sociedad Geologica del Peru, Lima, Peru.

Mortimer, C., 1973. The Cenozoic history of the southern Atacama Desert, Chile. J. Geol.
Soc. Lond. 129, 505–526.

Mote, T.I., Becker, T.A., Renne, P., Brimhall, G.H., 2001. Chronology of exotic mineralization
at El Salvador, Chile, by 40Ar/39Ar dating of copper wad and supergene alunite. Econ.
Geol. Bull. Soc. 96, 351–366.

Mpodozis, C., Clavero, J., 2002. Tertiary evolution of the southwestern edge of the Puna
Plateau: Cordillera Claudio Gay (26°′27° S), northern Chile. International Symposium
on Andean Geodynamics (ISAG), 5th,Toulouse, France, 2002, Extended Abstracts,
pp. 445–448.

Mpodozis, C., Cornejo, P., 2012. Cenozoic Tectonics and Porphyry Copper Systems of the
Chilean Andes. In: Hedenquist, J.W., Harris, M., Camus, F. (Eds.), Geology and Genesis
of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe.
Society of Economic Geologists Special Publication 16, pp. 329–360.

Mpodozis, C., Kay, S.M., 2003. Neogene tectonics, ages and mineralization along the tran-
sition zone between the El Indio and Maricunga mineral belts (Argentina and Chile
28–29°). 10° Congreso Geológico Chileno. Universidad de Concepción, Concepción,
Chile (CD-ROM).

Muntean, J.L., Einaudi, M.T., 2001. Porphyry-Epithermal Transition: Maricunga Belt,
Northern Chile. Econ. Geol. 96, 743–772.

Murakami, H., Seo, J.H., Heinrich, C.A., 2010. The relation between Cu/Au ratio and
formation depth of porphyry-style Cu–Au ± Mo deposits. Mineral. Deposita 45,
11–21.

Niemeyer, H., Munizaga, R., 2008. Structural control of the emplacement of the Potrerillos
porphyry copper, central Andes of Chile. J. S. Am. Earth Sci. 26, 261–270.

Noble, D.C., McKee, E.H., 1999. The Miocene metallogenic belt of central and northern
Peru. In: Skinner, B.K. (Ed.), Geology and Ore Deposits of the Central Andes. Society
of Economic Geologists Special Publication 7, pp. 155–193.

Noble, D.C., Silberman, M.L., 1984. Evolución volcánica e hidrotermal y cronología de K-Ar
del distrito minero de Julcani. Sociedad Geológica del Perú, Volumen Jubilar, Perú p.
1–35.

Noble, D.C., McKee, E.H., Mourier, T., Mégard, F., 1990. Cenozoic stratigraphy, magmatic
activity, compressive deformation, and uplift in northern Peru. Geol. Soc. Am. Bull.
102, 1105–1113.

Noble, D.C., Vidal, C.E., Perelló, J., Rodriguez, P.O., 2004. Space–Time Relationships of Some
Porphyry Cu–Au, Epithermal Au, and other magmatic-related mineral deposits in
Northern Peru. In: Sillitoe, R.H., Perello, J., Vidal, C.E. (Eds.), Andean Metallogeny:
New Discoveries, Concepts, and Updates. Society of Economic Geologists Special
Publication 11, pp. 313–319.

O'Driscoll, L.J., Richards, M.A., Humphreys, E.D., 2012. Nazca–South America interactions
and the late Eocene–late Oligocene flat‐slab episode in the central Andes. Tectonics 31.

Olson, S.F., 1984. Geology of the Portrerillos District, Atacama, Chile. Stanford University,
(Unpubl. PhD thesis).
Ossandon, C.G., Freraut, C.R., Gustafson, L.B., Lindsay, D.D., Zentilli, M., 2001. Geology of
the Chuquicamata Mine: A Progress Report. Econ. Geol. 96, 249–270.

Oviedo, L., Fuster, N., Tschischow, N., Ribba, L., Zuccone, A., Grez, E., Aguilar, A., 1991.
General geology of La Coipa precious metal deposit, Atacama, Chile. Econ. Geol.
Bull. Soc. 86, 1287–1300.

Pardo‐Casas, F., Molnar, P., 1987. Relative motion of the Nazca (Farallon) and South
American plates since Late Cretaceous time. Tectonics 6, 233–248.

Perello, J., Carlotto, V., Zarate, A., Ramos, P., Posso, H., Neyra, C., Caballero, A., Fuster, N.,
Muhr, R., 2003. Porphyry-style alteration and mineralization of the Middle Eocene
to Early Oligocene Andahuaylas–Yauri Belt, Cuzco Region, Peru. Econ. Geol. 98,
1575–1605.

Perelló, J., Brockway, H., Martini, R., 2004. Discovery and geology of the Esperanza por-
phyry copper–gold deposit. Antofagasta Region, northern Chile: S. In: Sillitoe, R.H.,
Perello, J., Vidal, C.E. (Eds.), Andean Metallogeny: New Discoveries, Concepts, and
Updates. Society of Economic Geologists Special Publication 11, pp. 167–186.

Petersen, U., Noble, D., Arenas, M., Goodell, P., 1977. Geology of the Julcani mining district,
Peru. Econ. Geol. 72, 931–949.

Petford, N., Atherton, M.P., 1992. Granitoid emplacement and deformation along a major
crustal lineament: the Cordillera Blanca, Peru. Tectonophysics 205, 171–185.

Poblete, J.A., Bissig, T., Mortensen, J.K., Gabites, J., Friedman, R., Rodriguez, M., 2014.
The Cerro Bayo District, Chilean Patagonia: Late Jurassic to Cretaceous Magmatism
and Protracted History of Epithermal Ag–Au Mineralization. Econ. Geol. 109,
487–502.

Polania, J.H., 1980. Die Uranvorkommen von California bei Bucaramanga (Kolumbien).
University of Stuttgart, Germany, p. 152 (Unpubl. PhD thesis).

Pudack, C., Halter, W.E., Heinrich, C.A., Pettke, T., 2009. Evolution of magmatic vapor to
gold-rich epithermal liquid: the porphyry to epithermal transition at Nevados de
Famatina, Northwest Argentina. Econ. Geol. 104, 449–477.

Puig, A., Diaz, S., Cuitino, L., 1988. Sistemas hidrotermales asociados a calderas en el arco
volcanico paleogeno de la region de Antofagasta, Chile; distritos El Guanaco, Cachinal
de La Sierra y El Soldado. Rev. Geol. Chile 15, 57–82.

Quang, C.X., Clark, A.H., Lee, J.K., Guillén, J., 2003. 40Ar–39Ar Ages of Hypogene and Super-
gene Mineralization in the Cerro Verde–Santa Rosa Porphyry Cu–Mo Cluster,
Arequipa, Peru. Econ. Geol. 98, 1683–1696.

Quang, C.X., Clark, A.H., Lee, J.K., Hawkes, N., 2005. Response of supergene processes to
episodic Cenozoic uplift, pediment erosion, and ignimbrite eruption in the porphyry
copper province of southern Peru. Econ. Geol. 100, 87–114.

Rainbow, A., 2009. Genesis and Evolution of the Pierina High-sulphidation Epithermal
Au–Ag Deposit, Ancash, Perú. Queen's University, Kingston, On, Canada, p. 277
(Unpublished PhD thesis).

Rainbow, A., Clark, A.H., Kyser, T.K., Gaboury, F., Hodgson, C.J., 2005. The Pierina
epithermal Au–Ag deposit, Ancash, Peru; paragenetic relationships, alunite textures,
and stable isotope geochemistry. Chem. Geol. 215, 235–252.

Rainbow, A., Kyser, T.K., Clark, A.H., 2006. Isotopic evidence for microbial activity during
supergene oxidation of a high-sulfidation epithermal Au–Ag deposit. Geology 34,
269–272.

Ramos, V.A., 2008. The basement of the Central Andes; the Arequipa and related terranes.
Annu. Rev. Earth Planet. Sci. 36, 289–324.

Ramos, V.A., 2009. Anatomy and global context of the Andes: Main geologic features and
the Andean orogenic cycle. Geol. Soc. Am. Mem. 204, 31–65.

Restrepo-Moreno, S.A., Foster, D.A., Stockli, D.F., Parra-Sánchez, L.N., 2009. Long-term ero-
sion and exhumation of the “Altiplano Antioqueño”, Northern Andes (Colombia)
from apatite (U–Th)/He thermochronology. Earth Planet. Sci. Lett. 278, 1–12.

Riquelme, R., Herail, G., Martinod, J., Charrier, R., Darrozes, J., 2007. Late Cenozoic geomor-
phologic signal of Andean forearc deformation and tilting associated with the uplift
and climate changes of the southern Atacama Desert (26° S–28° S). Geomorphology
86, 283–306.

Riquelme, R., Darrozes, J., Maire, E., Herail, G., Soula, J.-C., 2008. Long-term denudation
rates from the Central Andes (Chile) estimated from a Digital Elevation Model
using the Black Top Hat function and Inverse Distance Weighting: implications for
the Neogene climate of the Atacama Desert. Andean Geol. 35, 105.

Rodriguez, M.A.L., 2014. Geology, Alteration, Mineralization and Hydrothermal Evolution
of the La Bodega–La Mascota Deposits, California–Vetas Mining District, Eastern
Cordillera of Colombia, Northern Andes. The University of British Columbia, p. 325,
(Unpubl. MSc thesis).

Rodriguez, M.P., Aguilar, G., Urresty, C., Charrier, R., 2014. Neogene Landscape Evolution in
the Andes of North-central Chile Between 28 and 32°S: Interplay Between Tectonic
and Erosional Processes: Geological Society. Special Publications, London, p. 399
http://dx.doi.org/10.1144/SP399.15.

Rosenbaum, G., Giles, D., Saxon,M., Betts, P.G., Weinberg, R.F., Duboz, C., 2005. Subduction
of the Nazca Ridge and the Inca Plateau: Insights into the formation of ore deposits in
Peru. Earth Planet. Sci. Lett. 239, 18–32.

Rossell, W., De La Cruz, O., Romero, D., 2006. Visita técnica a la Mina Quicay–
Pacoyán. Instituto Geologico Minero y Metalurgico (Ingemmet), Peru (www.
slideshare.net. Technical powerpoint Presentation available for download, July
3rd, 2014).

Rye, R.O., 1993. The evolution of magmatic fluids in the epithermal environment; the
stable isotope perspective. Econ. Geol. 88, 733–752.

Rye, R.O., 2005. A review of the stable-isotope geochemistry of sulfate minerals in
selected igneous environments and related hydrothermal systems. Chem. Geol.
215, 5–36.

Rye, R.O., Bethke, P.M., Wasserman, M.D., 1992. The stable isotope geochemistry of acid
sulfate alteration. Econ. Geol. 87, 225–262.

Sandeman, H.A., Clark, A.H., Farrar, E., 1995. An integrated tectono-magmatic model for
the evolution of the southern Peruvian Andes (13–20 S) since 55 Ma. Int. Geol. Rev.
37, 1039–1073.

http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0935
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0935
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0935
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0935
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0450
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0450
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0450
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0440
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0440
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0440
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0940
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0940
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0940
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0945
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0945
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0945
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0455
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0455
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0455
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0455
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0950
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0950
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0950
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0460
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0460
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0460
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0465
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0465
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0465
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0465
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0465
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0470
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0470
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0470
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0475
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0475
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0475
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0480
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0480
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0480
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0955
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0955
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0955
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0485
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0485
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0485
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0490
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0490
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0495
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0495
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0495
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0495
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0495
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0960
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0960
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0960
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0960
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0965
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0965
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0965
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0965
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1075
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1075
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1075
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1075
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0505
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0505
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0510
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0510
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0510
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0515
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0515
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0520
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0520
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0520
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf6000
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf6000
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf6000
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0525
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0525
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0525
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0970
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0970
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0970
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0970
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0970
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0535
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0535
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0975
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0975
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0980
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0980
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0545
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0545
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0985
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0985
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0555
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0555
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0555
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0990
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0990
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0990
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0990
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0560
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0560
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0565
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0565
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0570
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0570
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0570
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0995
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0995
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0575
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0575
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0575
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0580
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0580
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0580
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0585
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0585
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0585
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0585
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0585
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0590
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0590
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0590
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1000
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1000
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1000
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0595
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0595
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0595
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0600
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0600
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0600
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0605
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0605
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0610
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0610
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0615
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0615
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0615
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0620
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0620
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0620
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0620
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0625
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0625
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0625
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0625
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1005
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1005
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1005
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1005
http://dx.doi.org/10.1144/SP399.15
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0640
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0640
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0640
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1010
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1010
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1010
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1010
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0645
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0645
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0650
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0650
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0650
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf5000
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf5000
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0655
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0655
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0655

Page 38

ore01334mw-eps.9.eps


364 T. Bissig et al. / Ore Geology Reviews 65 (2015) 327–364
Scher, S., Williams-Jones, A.E., Williams-Jones, G., 2013. Fumarolic activity, acid-sulfate
alteration, and high sulfidation epithermal precious metal mineralization in the
crater of Kawah Ijen volcano, Java, Indonesia. Econ. Geol. 108, 1099–1118.

Schildgen, T.F., Hodges, K.V., Whipple, K.X., Reiners, P.W., Pringle, M.S., 2007. Uplift of the
western margin of the Andean Plateau revealed from canyon incision history,
southern Peru. Geology 35, 523–526.

Schuette, P., Chiaradia, M., Beate, B., 2010. Geodynamic controls on Tertiary arc magmatism
in Ecuador; constraints from U/Pb zircon geochronology of Oligocene–Miocene
intrusions and regional age distribution trends. Tectonophysics 489, 159–176.

Schuette, P., Chiaradia, M., Barra, F., Villagomez, D., Beate, B., 2012. Metallogenic features
of Miocene porphyry Cu and porphyry-related mineral deposits in Ecuador revealed
by Re/Os, 40Ar/39Ar, and U/Pb geochronology. Mineral. Deposita 47, 383–410.

Sébrier, M., Lavenu, A., Fornari, M., Soulas, J.-P., 1988. Tectonics and uplift in central Andes
(Perú, Bolivia and northern Chile) from Eocene to present. Géodynamique 3, 85–106.

Shagam, R., Banks, P.O., Kohn, B.P., Dasch, L.E., Vargas, R., Pimentel, N., Rodríguez, G.I.,
1984. Tectonic Implications of CretaceousePliocene fission-track ages from rocks of
the circum-Maracaibo Basin region of western Venezuela and eastern Colombia.
Geol. Soc. Am. Mem. 162, 385–412.

Sillitoe, R.H., 1994. Erosion and collapse of volcanoes: Causes of telescoping in intrusion-
centered ore deposits. Geology 22, 945–948.

Sillitoe, R.H., 1995. Exploration of porphyry copper lithocaps. Proc. Pac. Rim Congr. 95,
527–532.

Sillitoe, R.H., 2008. Special Paper: Major Gold Deposits and Belts of the North and South
American Cordillera: Distribution, Tectonomagmatic Settings, and Metallogenic
Considerations. Econ. Geol. 103, 663–687.

Sillitoe, R.H., 2010. Porphyry copper systems. Econ. Geol. 105, 3–41.
Sillitoe, R.H., Hedenquist, J.W., 2003. Linkages between volcanotectonic settings, ore-fluid

compositions, and epithermal precious metal deposits. In: Simmons, S.F., Graham, I.
(Eds.), Volcanic, Geothermal, and Ore-Forming Fluids: Rulers and Witnesses of
Processes Within the Earth. Special Publication–Society of Economic Geologists 10,
pp. 315–343.

Sillitoe, R.H., Mortimer, C., Clark, A.H., 1968. A Chronology of Landform Evolution and
Supergene Mineral Alteration, Southern Atacama Desert. Institution of Mining and
Metallurgy Transactions, Chile, pp. 166–169 (sec. B 77).

Sillitoe, R.H., McKee, E.H., Vila, T., 1991. Reconnaissance K–Ar geochronology of the
Maricunga gold–silver belt, northern Chile. Econ. Geol. 86, 1261–1270.

Sillitoe, R.H., Tolman, J., Van Kerkvoort, G., 2013. Geology of the caspiche porphyry gold–
copper deposit, maricunga belt, Northern Chile. Econ. Geol. 108, 585–604.

Simmons, S.F., 1991. Hydrologic implications of alteration and fluid inclusion studies in
the Fresnillo District, Mexico; evidence for a brine reservoir and a descending
water table during the formation of hydrothermal Ag–Pb–Zn orebodies. Econ. Geol.
86, 1579–1601.

Simmons, S.F., 2002. The paleosurface and paleowater table and their relationship to
epithermal mineralization. Soc. Econ. Geol. Newsl. 51, 28–29.

Simmons, S.F., Brown, K.L., 2006. Gold in magmatic hydrothermal solutions and the rapid
formation of a giant ore deposit. Science 314, 288–291.

Simmons, S.F., White, N.C., John, D.A., 2005. Geological characteristics of epithermal
precious and base metal deposits. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb,
R.J., Richards, J.P. (Eds.), Economic Geology; one hundredth anniversary volume,
1905–2005. Society of Economic Geologists, pp. 455–522.

Skinner, S.M., Clayton, R.W., 2013. The lack of correlation between flat slabs and bathy-
metric impactors in South America. Earth Planet. Sci. Lett. 371, 1–5.

Spikings, R.A., Winkler, W., Seward, D., Handler, R., 2001. Along-strike variations in the
thermal and tectonic response of the continental Ecuadorian Andes to the collision
with heterogeneous oceanic crust. Earth Planet. Sci. Lett. 186, 57–73.

Steinmann, M., Hungerbuehler, D., Seward, D., Winkler, W., 1999. Neogene tectonic evo-
lution and exhumation of the southern Ecuadorian Andes; a combined stratigraphy
and fission-track approach. Tectonophysics 307, 255–276.

Stoffregen, R.E., 1987. Genesis of acid–sulfate alteration and Au–Cu–Ag mineralization at
Summitville, Colorado. Econ. Geol. 82, 1575–1591.

Strusievicz, O.R., Clark, A.H., Lee, J.K.L., Farrar, E., Slauenwhite, M., Hodgson, C.J., 2000.
Metallogenetic relationships of the Huaraz, Ancash, segment of the precious-base
metal sub-province of northern Peru. Abstr. Programs Geol. Soc. Am. 32, 504.
Taran, Y.A., Bernard, A., Gavilanes, J.-C., Africano, F., 2000. Native gold in mineral precipi-
tates from high-temperature volcanic gases of Colima Volcano, Mexico. Appl.
Geochem. 15, 337–346.

Tassinari, C.C.G., Pinzon, F.D., Buena Ventura, J., 2008. Age and sources of gold mineraliza-
tion in the Marmato mining district, NW Colombia: a Miocene–Pliocene epizonal
gold deposit. Ore Geol. Rev. 33, 505–518.

Teal, L., Benavides, A., 2010. History and geologic overview of the Yanacocha mining
district, Cajamarca, Peru. Econ. Geol. 105, 1173–1190.

Thompson, J.F.H., Gale, V.G., Tosdal, R.M., Wright, W.A., 2004. Characteristics and
formation of the Jeronimo carbonate-replacement gold deposit, Potrerillos district,
Chile. In: Sillitoe, R.H., Perello, J., Vidal, C.E. (Eds.), Andean Metallogeny: New Discov-
eries, Concepts, and Updates. Society of Economic Geologists Special Publication 11,
pp. 75–95.

Thouret, J.C.,Wörner, G., Gunnell, Y., Singer, B., Zhang, X., Souriot, T., 2007. Geochronologic
and stratigraphic constraints on canyon incision and Miocene uplift of the Central
Andes in Peru. Earth Planet. Sci. Lett. 263, 151–166.

Tosdal, R.M., Clark, A.H., Farrar, E., 1984. Cenozoic polyphase landscape and tectonic
evolution of the Cordillera Occidental, southernmost Peru. Geol. Soc. Am. Bull. 95,
1318–1332.

Tosdal, R.M., Dilles, J.H., Cooke, D.R., 2009. From source to sinks in auriferous magmatic-
hydrothermal porphyry and epithermal deposits. Elements 5, 289–295.

Van Der Lelij, R., 2013. Reconstructing North-western GondwanaWith Implications for the
Evolution of the Iapetus and Rheic Oceans: A Geochronological, Thermochronological
and Geochemical Study. University of Geneva, Switzerland, p. 221 (Unpubl. PhD thesis).

Vargas, C.A., Mann, P., 2013. Tearing and Breaking Off of Subducted Slabs as the Result of
Collision of the Panama Arc‐Indenter with Northwestern South America. Bull.
Seismol. Soc. Am. 103, 2025–2046.

Vidal, C., Ligarda, R., 2004. Enargite–gold deposits at Marcapunta. Colquijirca mining dis-
trict, central Peru: Mineralogic and geochemical zoning in subvolcanic, limestone-
replacement deposits of high-sulfidation epithermal type. In: Sillitoe, R.H., Perello, J.,
Vidal, C.E. (Eds.), Andean Metallogeny: New Discoveries, Concepts, and Updates.
Society of Economic Geologists Special Publication 11, pp. 231–241.

Vila, T., Sillitoe, R.H., 1991. Gold-rich porphyry systems in the Maricunga Belt, northern
Chile. Econ. Geol. Bull. Soc. 86, 1238–1260.

Villagómez, D., Spikings, R., 2013. Thermochronology and tectonics of the Central and
Western Cordilleras of Colombia: Early Cretaceous–Tertiary evolution of the
Northern Andes. Lithos 160, 228–249.

Villagomez, D., Spikings, R., Mora, A., Guzman, G., Ojeda, G., Cortes, E., van der Lelij, R.,
2011. Vertical tectonics at a continental crust-oceanic plateau plate boundary zone;
fission-track thermochronology of the Sierra Nevada de Santa Marta, Colombia.
Tectonics 30.

Warren, I., Zuluaga, J.I., Robbins, C.H., Wulftange, W.H., Simmons, S.F., 2004. Geology and
geochemistry of epithermal Au–Ag mineralization in the El Peñón district, northern
Chile. In: Sillitoe, R.H., Perello, J., Vidal, C.E. (Eds.), Andean Metallogeny: New Discov-
eries, Concepts, and Updates. Society of Economic Geologists Special Publication 11,
pp. 113–139.

Warren, I., Simmons, S.F., Mauk, J.L., 2007. Whole-rock geochemical techniques for evalu-
ating hydrothermal alteration, mass changes, and compositional gradients associated
with epithermal Au–Ag mineralization. Econ. Geol. 102 (5), 923–948.

Winocur, D.A., Litvak, V.D., Ramos, V.A., 2014. Magmatic and tectonic evolution of the
Oligocene Valle del Cura basin, Main Andes of Argentina and Chile: evidence for
generalized extension. Geol. Soc. Lond. Spec. Publ. 399. http://dx.doi.org/10.1144/
SP399.2.

Witzke, T., Kolitsch, U., Krause,W.,Wiechowski, A., Medenbach, O., Kampf, A.R., Steele, I.M.,
Favreau, G., 2006. Guanacoite, Cu2Mg2 (Mg0.5Cu0.5)(OH)4 (H2O)4(AsO4), a new arse-
nate mineral species from the El Guanaco Mine, near Taltal, Chile; description and
crystal structure. Eur. J. Mineral. 18, 813–821.

Yáñez, G.A., Ranero, C.R., Huene, R., Díaz, J., 2001. Magnetic anomaly interpretation across
the southern central Andes (32–34 S): The role of the Juan Fernández Ridge in the
late Tertiary evolution of the margin. J. Geophys. Res. Solid Earth 106, 6325–6345
(1978–2012).

Zappettini, E., 2008. Geología de frontera Argentina–Chile. http://sig.segemar.gov.ar/
(accessed March 2014).

http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0660
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0660
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0660
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0665
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0665
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0665
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0675
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0675
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0675
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0680
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0680
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0680
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0680
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0680
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0685
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0685
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0690
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0690
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0690
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0695
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0695
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1020
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1020
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0700
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0700
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0700
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0705
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1025
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1025
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1025
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1025
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1025
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1030
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1030
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1030
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0720
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0720
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0725
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0725
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0740
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0740
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0740
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0740
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0730
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0730
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0735
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0735
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1035
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1035
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1035
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1035
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0745
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0745
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0750
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0750
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0750
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0755
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0755
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0755
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0760
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0760
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0770
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0770
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0775
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0775
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0775
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0780
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0780
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0780
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0785
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0785
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1040
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1040
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1040
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1040
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1040
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0795
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0795
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0795
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0800
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0800
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0800
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0805
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0805
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1045
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1045
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1045
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0810
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0810
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0810
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1050
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1050
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1050
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1050
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1050
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0820
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0820
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0825
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0825
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0825
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1055
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1055
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1055
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1060
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1060
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1060
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1060
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1060
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0840
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0840
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0840
http://dx.doi.org/10.1144/SP399.2
http://dx.doi.org/10.1144/SP399.2
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0850
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0850
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0850
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0850
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0850
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0850
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0850
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0850
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0850
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0850
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf0850
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1065
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1065
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1065
http://refhub.elsevier.com/S0169-1368(14)00242-X/rf1065
http://sig.segemar.gov.ar/

Similer Documents